Log in

View Full Version : SBC ARM boards: an overview



Dirk Broer
07-28-2015, 11:51 AM
Year
Core
Architecture
Diagram
SOC
Example
SBC
Example(s)



2003

ARM11 (https://en.wikipedia.org/wiki/ARM11)

ARMv6
http://www.arm.com/assets/images/proc-A1176JZF-S.gif
Broadcom BCM2835 (http://www.farnell.com/datasheets/1521578.pdf), BCM21553
VIA WonderMedia WM87x0 (http://www.wondermedia.com.tw/en/products/platform/soc/wm8750/index.jsp)
Raspberry Pi A, A+, B, B+ (https://en.wikipedia.org/wiki/Raspberry_Pi), Odroid-W (http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140610189490)
Via APC 8750 (http://apc.io/products/8750a/)



2005

ARM
Cortex-A8 (https://en.wikipedia.org/wiki/ARM_Cortex-A8)

ARMv7-A
http://www.arm.com/Cortex-A8-chip-diagram-203.png (http://www.arm.com/Cortex-A8-chip-diagram-LG.png)
Texas Instruments Sitara AM335x, OMAP 3 (https://en.wikipedia.org/wiki/Sitara_ARM_Processor)
Allwinner A10, A13 (https://en.wikipedia.org/wiki/Allwinner_A1X)
Apple A4
Freescale i.MX5x
Rockchip RK2918, RK2906
Samsung Exynos 3110, S5PC110, S5PV210
ZiiLABS ZMS-08
BeagleBone Black (https://en.wikipedia.org/wiki/BeagleBoard#BeagleBone_Black)
Cubieboard (https://en.wikipedia.org/wiki/Cubieboard), Gooseberry



2007

ARM
Cortex-A9 (https://en.wikipedia.org/wiki/ARM_Cortex-A9)

ARMv7-A
http://www.arm.com/assets/images/tpl/Cortex-A9-chip-diagram-203.png (http://www.arm.com/Cortex-A9-chip-diagram-LG.png)
Freescale i.MX6x (https://en.wikipedia.org/wiki/I.MX#i.MX6x_series)
Actions ATM702x, ATM703x
Altera Cyclone V,
Arria V/10
Amlogic AML8726, MX, M6x, M801, M802/S802, S812, T866
Apple A5, A5X
Broadcom VideoCore BCM21xxx, BCM28xxx
HiSilicon K3V2
Leadcore LC1810, LC1811
MediaTek MT65xx
Nvidia Tegra, 2, 3, 4i
Nufront NuSmart 2816M, NS115, NS115M
Renesas EMMA EV2, R-Car H1, RZ/A
Rockchip RK292x, RK30xx, RK31xx
Samsung Exynos 4
ST-Ericsson NovaThor
Telechips TCC8803
Texas Instruments OMAP 4
VIA WonderMedia WM88x0, 89x0
Xilinx Zynq-7000
ZiiLABS ZMS-20, ZMS-40
CuBox (https://en.wikipedia.org/wiki/CuBox), HummingBoard (https://en.wikipedia.org/wiki/SolidRun#HummingBoard), Udoo (https://en.wikipedia.org/wiki/UDOO)



2009

ARM
Cortex-A5 (https://en.wikipedia.org/wiki/ARM_Cortex-A5)

ARMv7-A
http://www.arm.com/Cortex-A5-chip-diagram-203.png (http://www.arm.com/Cortex-A5-chip-diagram-LG.png)
Amlogic M805/S805 (https://en.wikipedia.org/wiki/Amlogic)
Actions Semiconductor ATM702x
Atmel SAMA5D3
Qualcomm Snapdragon S4 Play, 200
InfoTMIC iMAPx820, iMAPx15
Telechips TCC892x
Odroid-C1, C1+ (https://en.wikipedia.org/wiki/Odroid)





Year
Cortex
Application
Core
Architecture
Diagram
SOC
Example
SBC
Example(s)



2010

ARM
Cortex-A15 (https://en.wikipedia.org/wiki/ARM_Cortex-A15)

ARMv7-A

http://www.arm.com/Cortex-A15-chip-diagram-203.png (http://www.arm.com/Cortex-A15-chip-diagram-LG.png)

nVidia Tegra 4, K1 (https://en.wikipedia.org/wiki/Tegra#Tegra_K1)
Allwinner A80
HiSilicon K3V3
MediaTek MT6599
Nvidia Tegra 4, K1
Renesas R-Car H2
Samsung Exynos 5
Texas Instruments OMAP 5, DRA7xx

nVidia Jetson TK1
Arndale board (http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html)


The Nvidia Tegra K1, as used in the Jetson TK1, is made using an ARM Cortex-A15 quad-core CPU and a Kepler SMX GPU (comparable with a GeForce GTX 770 in features and of 300 GFLOP power)
Input voltage is 12V, power consumption (idle-max): 3-12W

Features : Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT
Pipeline : 15 stage integer/17–25 stage floating point pipeline, with out-of-order speculative issue 3-way superscalar execution pipeline.
3.5-4.0 DMIPS/MHz, giving


floating point MIPS (Whetstone) per CPU, integer MIPS (Dhrystone) per CPU


You don't see many of these high powered ARM SOCs on their own, most Cortex-A15 cores are found in a big.LITTLE implementation, a power-optimization technology where the high-performance 'big' Cortex-A15 cores are combined with more efficient 'LITTLE' CPU cores (the Cortex-A7) to deliver peak-performance capacity, higher sustained performance and increased parallel processing performance at significantly lower average power. Examples are the Samsung Exynos 5 Octa's and the Allwinner A80.




Year
Cortex
Application
Core
Architecture
Diagram
SOC
Example
SBC
Example(s)



2011

ARM
Cortex-A7 (https://en.wikipedia.org/wiki/ARM_Cortex-A7)

ARMv7-A

http://www.arm.com/Cortex-A7-chip-diagram-203.png (http://www.arm.com/Cortex-A7-chip-diagram-LG.png)

Allwinner-A2x, A3x, H3 (https://en.wikipedia.org/wiki/Allwinner_Technology#A_and_H-Series)
Broadcom VideoCore BCM2836, BCM23550 (http://www.broadcom.com/blog/raspberry-pi/love-to-get-your-hands-on-a-raspberry-pi-2-hat-tip-to-broadcom/)
Freescale QorIQ LS10xx
Leadcore LC1813, LC1913
Marvell Armada PXA1920
MediaTek MT65xx
Qualcomm Snapdragon 200, 400

Banana Pi M1, M1+, Pro, M2 (https://en.wikipedia.org/wiki/Banana_Pi)
Raspberry Pi2 (https://en.wikipedia.org/wiki/Raspberry_Pi)

Dirk Broer
08-25-2015, 11:28 PM
As the 'SBC ARM boards: an overview' shows all the signs of becoming overly long and unreadable I will cut it up into pieces.
This will leave the original posting a large table giving an overview of ARM-based SBCs, just as was originally meant.

Here's part one: ARM11 (https://en.wikipedia.org/wiki/ARM11)
The ARM11 is an important landmark in ARM history. From here on ARM split the design into Application CPUs (Cortex-A), Real-time CPUs (Cortex-R) and Microcontroller CPUs (Cortex-M).
The ARM11MPCore, one of the ARM11 designs, became the first multi-core ARM chip. The ARM11 was then (2002-2003) also leap forward in performance, as is shown here when compared with its predecessor, the ARM926EJ-S:

http://www.arm.com/assets/images/ARM11vsARM9_Graph.gif



Year
CPU
Architecture
Cores
Production
Process
Speed
Diagram
Successor to
Succeeded by



2002

ARM1136J(F)-S

ARMv6

1

90nm
65nm
40nm

600MHz
1000MHz
1000MHz

http://www.arm.com/assets/images/proc-A1136.gif (http://www.arm.com/assets/images/ARM1136JF-S_chip_Big.jpg)

ARM926EJ-S

Cortex-A8
Cortex-A5



2003

ARM1156T2-S

ARMv6

1

90nm

600MHz

http://www.arm.com/assets/images/proc-A1156.gif (http://www.arm.com/assets/images/ARM1156T2-S_chip_Big.jpg)

ARM968E-S
ARM946E-S

Cortex-R4


2003

ARM1176J(F)-S

ARMv6

1

65nm
40nm

482-772MHz
1000MHz

http://www.arm.com/assets/images/proc-A1176JZF-S.gif (http://www.arm.com/assets/images/ARM1176JZF-S_chip_Big.jpg)

ARM926EJ-S

Cortex-A8
Cortex-A5



2005

ARM11MPCore

ARMv6

1-4

65nm

865 (single core) -
751MHz (Dual core)
732MHz (Quad core)

http://www.arm.com/assets/images/proc-A11MPC.gif (http://www.arm.com/assets/images/ARM11MPCORE_chip_Big.jpg)

ARM926EJ-S

Cortex-A5





CPU
SOC Examples
SBC Examples
Other Device
Example(s)


ARM1136J(F)-S
CSR Quatro 4230







Freescale i.MX3x (https://en.wikipedia.org/wiki/I.MX#i.MX3x_series)



original Zune 30 GB,
Toshiba Gigabeat S,
Kindle DX



Freescale MXC300-30 (http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MXC300-30)



Nokia E63,
Nokia E71,
Nokia 5800,
Nokia E51,
Nokia 6700 Classic,
Nokia 6120 Classic,
Nokia 6210 Navigator,
Nokia 6220 Classic,
Nokia 6290,
Nokia 6710 Navigator,
Nokia 6720 Classic,
Nokia E75,
Nokia N97,
Nokia N81



Qualcomm MSM7200 (https://en.wikipedia.org/wiki/MSM7000)



Eten Glofiish,
HTC TyTN II,
HTC Nike,
HTC Touch Dual,
HTC Touch Cruise,
HTC S730



Qualcomm MSM7201A (https://en.wikipedia.org/wiki/MSM7000)



HTC Dream,
HTC Magic,
HTC Diamond,
T-Mobile Comet US(Huawei Ideos U8150),
HTC Touch Pro



Qualcomm MSM7225 (https://en.wikipedia.org/wiki/MSM7000)



HTC Wildfire (https://en.wikipedia.org/wiki/HTC_Wildfire)



Qualcomm MSM7227 (https://en.wikipedia.org/wiki/MSM7000)



Samsung Galaxy Ace,
Samsung Galaxy Mini,
ZTE Link,
HTC Wildfire S,
HTC Legend, HTC Aria,
Viewsonic ViewPad 7,
BlackBerry Curve (https://en.wikipedia.org/wiki/BlackBerry_Curve)



Texas Instruments OMAP2 Series (https://en.wikipedia.org/wiki/OMAP#OMAP_22)



Nokia E90,
Nokia N93,
Nokia N95,
Nokia N82,
Zune,
BUGbase,
Nokia N800,
Nokia N810,
Motorola RIZR Z8


ARM1156T2-S







ARM1176J(F)-S
Ambarella A5s, A7, A7L (https://en.wikipedia.org/wiki/Ambarella_Inc.)







Broadcom BCM2835 (http://www.farnell.com/datasheets/1521578.pdf), BCM21553

Raspberry Pi A, A+, B, B+ (https://en.wikipedia.org/wiki/Raspberry_Pi)
Odroid-W (http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140610189490)

Roku 2 HD,
XD,
XS,
Streaming Stick (https://en.wikipedia.org/wiki/Roku)



Cavium ECONA CNS3000 series







Infotmic IMAPX210/220







MediaTek MTK6573







Mindspeed (now Macom) Comcerto 1000







nVidia GoForce 6100 (https://en.wikipedia.org/wiki/GoForce#GoForce_6100)







PLX Technology NAS782x







Qualcomm Atheros AR7400







Qualcomm MSM7627 (https://en.wikipedia.org/wiki/MSM7000)



Palm Pixi,
LG Optimus V (VM670),
Motorola Calgary/Devour



Samsung S3C6410



Barnes & Noble Nook (1st Edition),
Samsung Omnia II,
Samsung Moment,
Samsung M910 Intercept,
SmartQ 5,
Samsung I5700



Samsung S5L87xx







Samsung S5L8900



Apple iPhone,
Apple iPod touch 1G,
Apple iPhone 3G



ST-Ericsson Nomadik STn882x (https://en.wikipedia.org/wiki/Nomadik)







Telechips TCC890x (https://www.telechips.com/eng/Product/consumer_pro08.asp)



Augen GenTouch (http://www.cnx-software.com/2010/08/24/android-tablet-review-augen-gentouch/)



Xcometic KVM2800







VIA WonderMedia WM8750 (http://www.wondermedia.com.tw/en/products/platform/soc/wm8750/)

VIA APC 8750 (http://apc.io/products/8750a/)

NZXT Doko PC


ARM11MPCore
CSR Quatro 45xx, 53xx series







Nintendo CTR-CPU



Nintendo 3DS (https://en.wikipedia.org/wiki/Nintendo_3DS)



Nvidia Tegra APX 2500/2600, 600/650 (https://en.wikipedia.org/wiki/Tegra)



Zune HD (https://en.wikipedia.org/wiki/Zune_HD)



The Broadcom BCM2835 SOC as used in the Raspberry Pi's is made using an ARM1176JZF-S (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/index.html) single-core CPU and a VideoCore 4 (https://en.wikipedia.org/wiki/VideoCore) GPU.
These ARM11 chips are the last of their line (the ARMv6 architecture line) and were originally manufactured using 90nm, later with 65nm and even 40nm technology.
Considering the stock speed of the Raspberry Pi their SOC was made using a 65nm proccess (http://www.arm.com/products/processors/classic/arm11/).
The easy overclocking and lower power use of the '+' models may perhaps be due to the newer SOCs being made on 40nm.

Input voltage is 5V, power consumption varies from model to model:


Version
Off
Average
Max


A

0.15W

0.80W

1.07W


A+

0.125W

0.48W

0.76W


B

0.62W

2.12W

2.45W


B+

0.35W

1.15W

1.20W


Data from cnx-software.com (http://www.cnx-software.com/2015/02/12/raspberry-pi-banana-pi-and-odroid-c1-boards-power-consumption/) and mikronauts.com (http://www.mikronauts.com/raspberry-pi/raspberry-pi-2-model-b-review/7/)

CPU Features (http://unix.stackexchange.com/questions/43539/what-do-the-flags-in-proc-cpuinfo-mean) : swp (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/CJHBGBBJ.html), half (https://en.wikipedia.org/wiki/Half-precision_floating-point_format), thumb (https://en.wikipedia.org/wiki/ARM_architecture#Thumb), fastmult (http://comments.gmane.org/gmane.linux.ports.arm.kernel/4578), VFP (https://en.wikipedia.org/wiki/ARM_architecture#Floating-point_.28VFP.29), edsp (http://www.arm.com/products/processors/technologies/dsp-simd.php), java/jazelle (https://en.wikipedia.org/wiki/Jazelle), tls (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0205h/CIAIIFIB.html)
Pipeline : 8 stage, in-order, scalar
MIPS @ MHz : 1.25 DMIPS/MHz, giving:


Speed
in MHz
Floating point
MIPS (Whetstone)
per CPU
integer
MIPS (Dhrystone)
per CPU


700 (stock speed)

222

926


800 (modest overclock)

266

1073


900 (medium overclock)

-

-


950 (high overclock)

323

1275


1000 (turbo overclock)

338

1355


Mind you: overclocking can result in SD card corruption!

Pro's for the ARM11-based Raspberries are:

the abundance of hard- and software specially made for it,
the low price plus
the large community that is active with it.

Con's (BOINC-wise) are

the low performance (the Pi is meant for education, not for crunching),
the single core and
the as yet inability to make use of the SOCs 24 GFLOP GPU.

But when your done playing with BOINC on the Raspberry Pi you can still use it for e.g. domotica, prototyping, etc.
I'm going to test it soon to see whether I can run BOINC with the power delivered from a Waka Waka (http://nl.waka-waka.com/) solar cell. Udate: Yes, you can!
If the guys at Raspberry want to extend the life of the ARM11 they can come up with a Raspberry Pi Model C with -amongst others- a quad-core ARM11MP, 2GB of RAM and GigaBit Ethernet.



Project
Avg. running time WU in hours
Avg. credit per WU
Green light?
Orange light?
Red light?


Albert@Home

25

100

Yes

-

-


Asteroids@Home

tbd

tbd

-

Yes

-


Collatz@Home

tbd

tbd

Yes

-

-


Einstein@Home

25

63

Yes

-

-


Enigma@Home

5

30

Yes

-

-


FiND@Home

tbd

tbd

Yes

-

-


MilkyWay@Home

tbd

tbd

-

Yes

-


QCN (Quake Catcher Network)

tbd

tbd

-

Yes*

-


Radioactive@Home

tbd

tbd

Yes*

-

-


Seti@Home

110

-

-

Yes

-


theSkyNet POGS

47.3

186

Yes

-

-


WUProp

3.5

7

-

Yes

-


Yoyo@Home

tbd

28.86

Yes

-

-


[]
Legenda

tbd=To be determined
*=Needs a sensor though

- =
no data/not applicable

Green light=
Works out-of-the-box

Orange light=
Needs some fiddling

Red light=
Refuses to work


Soon to be updated yet again...

Brucifer
08-27-2015, 11:38 PM
Interesting reading! :-) We were just notified last month that the utility company was raising the electric cost effective this month. So the day is approaching where we are going to have to play with more efficient systems if we want to play. Sign of the times I guess. :-)

Dirk Broer
08-28-2015, 09:21 PM
Part two: ARM Cortex-A8

The ARM Cortex-A8 processor was introduced to the market in 2005 as a successor to the ARM11. It was ARMs first processor supporting the then new ARMv7A architecture. Compared to the ARM11 core the Cortex-A8 is a dual-issue superscalar design, achieving roughly twice the instructions executed per clock cycle.



Year
CPU
Architecture
Cores
Production
Process
Speed
Diagram
Successor to
Succeeded by



2005

ARM Cortex-A8 (https://en.wikipedia.org/wiki/ARM_Cortex-A8)

ARMv7-A

1

65nm
55nm
45nm

600-1500MHz
http://www.arm.com/Cortex-A8-chip-diagram-203.png (http://www.arm.com/Cortex-A8-chip-diagram-LG.png)

ARM1176J(F)-S

ARM Cortex-A9
ARM Cortex-A5





SOC
Example
GPU
Prduction
Process
Speed
SBC
Example(s)
Other
Example(s)


Allwinner A10 (https://en.wikipedia.org/wiki/Allwinner_A1X)

Mali400 (http://linux-sunxi.org/Mali400)

55nm

1000MHz

Cubieboard (https://en.wikipedia.org/wiki/Cubieboard)
Gooseberry (http://liliputing.com/2012/06/gooseberry-developer-boards-40-alternative-raspberry-pi.html)
Hackberry A10 (http://linux-sunxi.org/Miniand_Hackberry)
MarsBoard A10 (http://linux-sunxi.org/MarsBoard_A10)
OLinuXino A10 (http://linux-sunxi.org/Olimex_A10-OLinuXino-Lime)
pcDuino Lite (http://www.linksprite.com/?page_id=800)
pcDuino V2 (http://linux-sunxi.org/LinkSprite_pcDuino_V2)

Rikomagic MK802 (http://linux-sunxi.org/Rikomagic_mk802)
Rikomagic MK802+ (http://linux-sunxi.org/Rikomagic_mk802%2B)
Rikomagic MK802 II (http://linux-sunxi.org/Rikomagic_mk802ii)


Allwinner A10s (http://linux-sunxi.org/A10s)

Mali400 (http://linux-sunxi.org/Mali400)

55nm

1000MHz

A10s-OLinuXino-Micro (http://linux-sunxi.org/Olimex_A10s-OLinuXino-Micro)

Semitime g2 (http://linux-sunxi.org/Semitime_g2)


Allwinner A13 (https://en.wikipedia.org/wiki/Allwinner_A1X)

Mali400 (http://linux-sunxi.org/Mali400)

55nm

1000MHz

OLinuXino-A13 (https://en.wikipedia.org/wiki/OLinuXino#A13)

Various tablets (http://linux-sunxi.org/Category:A13_Tablets)


Apple A4 (https://en.wikipedia.org/wiki/Apple_A4)

PowerVR SGX 535 (https://en.wikipedia.org/wiki/List_of_PowerVR_products#Series5_.28SGX.29)

45nm

800-1000MHz



iPad,
iPhone4,
iPod Touch (4th generation),
AppleTV2


Freescale i.MX5x (http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX51_FAMILY&cof=0&am=0)

Adreno 200
(AMD Z430) (https://en.wikipedia.org/wiki/Adreno)

65nm

600-1000MHz

Freescale i.MX53 QSB (http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB)

eReaders
Tablets


Rockchip RK2906,
RK2918 (https://en.wikipedia.org/wiki/Rockchip#RK29xx_series)

Vivante GC800 (http://www.cnx-software.com/2013/01/19/gpus-comparison-arm-mali-vs-vivante-gcxxx-vs-powervr-sgx-vs-nvidia-geforce-ulp/)

55nm

1000-1200MHz



Newpad T3,
Cube U9GT2,
Teclast A15,
Cube U15GT,
WoPad i8,
Videocon VT71,
Archos 7c,
Archos 10c,
Archos 8 G2,
Archos Arnova G3,
Archos Arnova 10 G2,
Cresta CTP810,
Yanddao N12,
Vi32W,
ProTab 25,
DIT 7010


Samsung 3110
S5PC110
Hummingbird
Exynos 3 Single (http://www.samsung.com/global/business/semiconductor/file/media/Exynos_3110-0.pdf)

PowerVR SGX540 (https://en.wikipedia.org/wiki/List_of_PowerVR_products#Series5_.28SGX.29)

45nm

1000MHz

Odroid (original)

at 1 GHz:
Samsung Galaxy S line,
Samsung Wave S8500,
Samsung Wave II S8530,
Samsung Galaxy Tab,
Samsung Droid Charge,
Samsung Exhibit 4G,
Google Nexus S,
Meizu M9,
Samsung Stratosphere
at 1.2 GHz:
Samsung Infuse 4G


Samsung S5PV210 (http://www.samsung.com/global/business/semiconductor/file/media/Exynos_3110-0.pdf)

PowerVR SGX540 (https://en.wikipedia.org/wiki/List_of_PowerVR_products#Series5_.28SGX.29)

45nm

800-1000MHz

armStone-A8




Texas Instruments OMAP 3530 (https://en.wikipedia.org/wiki/Sitara_ARM_Processor)

TMS320C64x (https://en.wikipedia.org/wiki/Texas_Instruments_TMS320C6400)

65nm

720MHz

BeagleBoard (https://en.wikipedia.org/wiki/BeagleBoard)




Texas Instruments Sitara AM335x (https://en.wikipedia.org/wiki/Sitara_ARM_Processor)

Power VR SGX530 (https://en.wikipedia.org/wiki/List_of_PowerVR_products#Series5_.28SGX.29)

45nm

720-1000MHz

BeagleBone,
BeagleBone Black (https://en.wikipedia.org/wiki/BeagleBoard#BeagleBone_Black),
Embest SBC8600B,
MYIR MYD-AM335X,
phyBOARD-Wega




Texas Instruments Sitara AM370x (https://en.wikipedia.org/wiki/Sitara_ARM_Processor)

TMS320C64x (https://en.wikipedia.org/wiki/Texas_Instruments_TMS320C6400)

45nm

1000MHz

BeagleBoard-xM,
Gumstix Overo EarthSTORM,
Gumstix Overo Summit





The Texas Instruments Sitara AM3358 and AM3359 SOCs as used in the BeagleBone Black are made using an ARM Cortex-A8 single-core CPU and a Power VR SGX530 (https://en.wikipedia.org/wiki/PowerVR#Power_VR_chipsets) GPU.
Input voltage is 5V, power consumption (idle-max): 1.05-2.3W
CPU : A Texas Instruments ARMv7-A compatible processor ARM Cortex-A8, rev 2 (v7l) aka Sitara AM3358BZCZ100 in my BeagleBone Black Rev.C
Features : swp (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/CJHBGBBJ.html), half (https://en.wikipedia.org/wiki/Half-precision_floating-point_format), thumb (https://en.wikipedia.org/wiki/ARM_architecture#Thumb), fastmult (http://comments.gmane.org/gmane.linux.ports.arm.kernel/4578), VFP (https://en.wikipedia.org/wiki/ARM_architecture#Floating-point_.28VFP.29), edsp (http://www.arm.com/products/processors/technologies/dsp-simd.php), ThumbEE (https://en.wikipedia.org/wiki/ARM_architecture#Thumb_Execution_Environment_.28Th umbEE.29), NEON (https://en.wikipedia.org/wiki/ARM_architecture#Advanced_SIMD_.28NEON.29), VFPv3 (https://en.wikipedia.org/wiki/ARM_architecture#Floating-point_.28VFP.29), tls (https://en.wikipedia.org/wiki/Thread-local_storage)
Pipeline : 13 stage, in-order, dual issue, superscalar.

2.01 DMIPS/MHz, giving


Speed in MHz
OS
Floating Point MIPS (Whetstone) per CPU
Integer MIPS (Dhrystone) per CPU



1000

Beagle Debian

184

2047



1000

Android 4.4.4 "KitKat"

277

1607



Pro's for the BeagleBone are:

The hard- and software specially made for it -be it less than the Raspberry-,
The relatively low price -but more expensive than the Raspberry- plus
The community that is active with it.
It runs very stable from the onboard eMMC, no corruption problems.

Con's -BOINC-wise- are here too:

The low performance,
The single core and
The as yet inability to make really use of the SOCs Power VR SGX530 GPU, be it that the MIPs and GFLOPS are too low to be of any use, BOINC-wise.


So it is stronger than the Raspberry B+ on integer MIPS performance, but a little bit behind in the floating point MIPS -when using the original Ångström or Beagle Debian OS. Installing Android brought a huge increase of floating point performance at the cost of some integer performance, proving the so-called floating point weakness of the BBB software based.
But how does that translate into real-life performance? Running BOINC on an ARMv7 architecture CPU under Linux is no piece of cake. Most projects do NOT have an application for the platform (=OS/CPU combination), you have to compile them yourself. This I circumvented by first installing Android 4.4.4 and then installing Native BOINC.



Project
Avg. running time in hours
Avg. credit
Green light?
Orange light?
Red light?


Albert@Home

38

123

Yes

-

-


Asteroids@Home

tbd, first WU seems lost

tbd

Yes

-

-


Collatz@Home

tbd

tbd

Yes

tbd

tbd


Einstein@Home

44

63

Yes

-

-


Enigma@Home

3.1

45

Yes

-

-


GPUGrid

tbd

tbd

tbd

tbd

tbd


Moo! Wrapper

7

72

Yes

tbd

tbd


PrimeGrid

tbd

tbd

tbd

tbd

tbd


QCN (Quake Catcher Network)

tbd

tbd

Yes*

-

-


Radioactive@Home

tbd

tbd

-

-

No*


Ralph@Home

tbd

tbd

tbd

tbd

tbd


Rosetta@Home

tbd

tbd

tbd

tbd

tbd


Seti@Home

tbd

tbd

tbd

tbd

tbd


Seti@Home Beta

tbd

tbd

Yes

-

-


The SkyNet POGS

125

361

Yes

-

-


World Community Grid

11.6 (FAAH)
4.2 (OET)

-

Yes

-

-


WUProp

6

14

Yes

-

-


Yafu

tbd

tbd

tbd

tbd

tbd


Yoyo@Home

1.7

10.31

Yes

-

-


[]
Legenda

tbd=To be determined
*=Would need a sensor

- =
no data/not applicable

Green light=
Works out-of-the-box

Orange light=
Needs some fiddling

Red light=
Refuses to work


Soon to be updated too...

Dirk Broer
11-12-2015, 10:18 PM
Part three: The ARM Cortex-A9

The ARM Cortex-A9 processor was introduced to the market in 2008 as a successor to the ARM Cortex-A8. It was ARMs first Cortex A-processor supporting multiple cores on the then new ARMv7-A architecture (there is an earlier ARMv6 based multi-core ARM11 which might give the original Raspberry series an extra extension of life). Compared to their first ARMv7-A SOC, the ARM Cortex-A8, the Cortex-A9 offered an overall performance enhancement of well above 50%. Unfortunately some licencees saw that as an argument to sell their Cortex-A9 products at a much higher price too...

http://www.arm.com/assets/images/blogs/White_Background_PNG_Cortex-A9_SpecInt2k_Performance.png


Year
CPU
Architecture
Cores
Production
Process
Speed
Diagram
Successor to
Succeeded by



2008

ARM Cortex-A9 (https://en.wikipedia.org/wiki/ARM_Cortex-A9)

ARMv7-A
1, 2 or 4
65nm-20nm
800-2000MHz
http://www.arm.com/assets/images/tpl/Cortex-A9-chip-diagram-203.png (http://www.arm.com/assets/images/tpl/Cortex-A9-chip-diagram-LG.png)
ARM Cortex-A8
ARM Cortex-A15(32-bit)
ARM Cortex-A53(64-bit)





SOC
Example
GPU
Production
Process
Speed
Cores
SBC
Example(s)
Other
Example(s)


Actions ATM7021A
PowerVR SGX540
40 nm?
1300MHz
2




Actions ATM7039c
PowerVR SGX544MP
40 nm
1600MHz
4




Actions ATM7039s
PowerVR SGX544MP
28 nm
1600MHz
4




Actions ATM7059
PowerVR SGX544MP
28 nm
1600MHz
4




Actions S500
PowerVR SGX544MP
28 nm
1300MHz
4
LeMaker Guitar (http://www.lemaker.org/product-guitar-specification.html)
ActDuino S500 (http://www.actions-semi.com/en/productview.aspx?cat=103&id=148)



Altera Cyclone V
TES Electronic Solutions D/AVE HD (opt)
28 nm
925MHz
1-2




Altera Arria V
TES Electronic Solutions D/AVE HD (opt)
28 nm
1050MHz
1




Altera Arria 10
TES Electronic Solutions D/AVE HD (opt)
20 nm
1500MHz
2




Amlogic AML8726M
ARM Mali-400
65 nm






Amlogic AML8726MX/M6
ARM Mali-400MP2
40 nm






Amlogic M801, M802/S802
ARM Mali-450MP6
28 nm

4




Apple A5
PowerVR SGX543MP2
45 nm
32 nm
800-1000MHz
1-2

iPhone 4S, iPod Touch (5th generation), iPad 2, iPad Mini (1st generation)


Apple A5X
PowerVR SGX543MP4
45 nm
1000MHz
2

iPad 3rd generation


Broadcom BCM21664T
VideoCore 4
40 nm
1200MHz
2

Samsung Galaxy Ace Style, Samsung Galaxy Trend Plus


Broadcom BCM28155
VideoCore 4
40 nm
1200MHz
2

Samsung Galaxy S II Plus, Samsung Galaxy Grand, Samsung Galaxy S Duos 2 and Amazon Fire TV Stick


Freescale i.MX6x SoloLite
Vivante GC320 (2D); Vivante GC355 (vector)
40 nm
1000MHz
1




Freescale i.MX6x Solo
Vivante GC880 (3D); Vivante GC320 (2D)
40 nm
1000MHz
1
CuBox i1, HummingBoard i1, Udoo Neo, Wandboard Solo



Freescale i.MX6x DualLite
Vivante GC880 (3D); Vivante GC320 (2D)
40 nm
1000MHz
2
CuBox i2, HummingBoard i2, Udoo DualBasic



Freescale i.MX6x Dual
Vivante GC2000 (3D); Vivante GC320 (2D); Vivante GC355 (vector)
40 nm
1200MHz
2
CuBox i2eX, HummingBoard i2eX, Udoo Dual, Wandboard Dual



Freescale i.MX6x Quad
Vivante GC2000 (3D); Vivante GC320 (2D); Vivante GC355 (vector)
40 nm
1200MHz
4
CuBox i4Pro, CuBox i4x4, HummingBoard i4Pro, HummingBoard i4x4, Udoo Quad, Wandboard Quad



HiSilicon K3V2(Hi3620)
Vivante GC4000
40 nm
1500MHz
4

Huawei MediaPad 10 FHD, Huawei Ascend D2 (U9510), Huawei Honor 2 (U9508), Huawei Ascend P6S, Huawei Ascend P2, Huawei Ascend Mate, Lenovo A376, STREAM X (GSL07S)


HiSilicon K3V2E
Vivante GC4000
28 nm
1500MHz
4

Huawei Honor 3


Mediatek MT6575
PowerVR SGX531 Ultra
40 nm
1000MHz
1

LG Optimus L5 II


Nvidia Tegra 2 AP20H/T20
GeForce ULP
40 nm
1000-1200MHz
2

AP20H: Motorola Atrix 4G, Motorola Droid X2, Motorola Photon, LG Optimus 2X / LG Optimus Dual P990 / Optimus 2x SU660, Samsung Galaxy R, Samsung Captivate Glide, ZTE Mimosa X, Micromax Superfone A85, T-Mobile G2X P999, Acer Iconia Tab A200 and A500, LG Optimus Pad, Motorola Xoom, Sony Tablet S, Dell Streak 7, Dell Streak Pro, Asus Slider, Toshiba Thrive tablet, T-Mobile G-Slate
T20: Avionic Design Tamonten Processor Board, Exper EasyPad, Notion Ink Adam tablet, Olivetti OliPad 100, Point of View Mobii 10.1, ViewSonic G Tablet, ViewSonic ViewPad 10s, ASUS Eee Pad Transformer, Samsung Galaxy Tab 10.1, Toshiba AC100, Toshiba Folio 100, Advent Vega, Hannspree Hannspad, Aigo n700, CompuLab Trim-Slice nettop, E-Noa Interpad, Malata Tablet Zpad, MSI 10-inch (250 mm) tablet, Toradex Colibri T20, Lenovo IdeaPad Tablet K1, Lenovo ThinkPad Tablet, Velocity Micro Cruz Tablet L510, Zyrex Onepad SP1110, Zyrex Onepad SP1113G, Acer Iconia Tab A100


Nvidia Tegra 3 T30, T30L, T33, AP33
GeForce ULP
40 nm
1200-1600MHz
4+1
Toradex Apalis T30, Toradex Colibri T30
T30: Asus Eee Pad Transformer Prime, IdeaTab K2/LePad K2, Acer Iconia Tab A510, Acer Iconia Tab A700, ZTE Era, ZTE PF 100, ZTE T98, Toshiba AT270, Asus VivoTab RT, Fuhu Inc. nabi2 Tablet, Tesla Model S, Kungfu K3, Goophone I5, Olivetti Olipad 3, Microsoft Surface, Lenovo IdeaPad Yoga 11, Nvidia Cardhu developer tablet, Realpad Bunaken (RL-P700-QC)
T30L: Asus Transformer Pad TF300T, ASUS MeMO Pad Smart ME301T, Microsoft Surface, Nexus 7 (2012 version), Sony Xperia Tablet S, Acer Iconia Tab A210, WEXLER.TAB 7t, Lenovo IdeaTab A2109, Toshiba AT300 (Excite 10), Toshiba AT10-A (Excite Pure), BLU Quattro 4.5, BLU Quattro 4.5 HD HP Slate 7 Plus
T33: Asus Transformer Pad Infinity (TF700T), Fujitsu ARROWS X F-02E, Ouya, HTC One X+, Fujitsu Arrows Tab F-05E
AP33: LG Optimus 4X HD, Fujitsu Arrows X F-10D, HTC One X, XOLO Play T1000


Nvidia Tegra 4i
GeForce ULP
28 nm
2000MHz
4+1

Blackphone, LG G2 mini LTE, Wiko Highway 4G, Explay 4Game, Wiko Wax, QMobile Noir LT-250


Rockchip RK2928
Mali400 (http://linux-sunxi.org/Mali400)
55 nm
1000MHz
1

Cube U25GT, Double Power(Dopo) M-975, Touchmate TM-MID720, Denver TAC-70072


Rockchip RK3066/68
Mali400MP4 (http://linux-sunxi.org/Mali400)
40 nm
1600MHz
2

Monster M7 tablet, HP Slate 7, Inar إينار, i.onik TP 10.1-1500DC-KB, Colorovo CityTab Vision 10.1", Teclast P76e Dual-core, Teclast P76t, Teclast P98, Teclast P85, Window (YuanDao) N70S, Window (YuanDao) N101 I, Cube U9GT3, Cube U9GT4, Cube U21GT, PIPO S2, Cube U30GT, Cube U9GT V, Cube U18GT Elite Dual Core, BlueBerry NetCat M-12, CHUWI V8 Dual-core, CHUWI V99, Aoson M11, Pipo S1, Ployer Momo7 IPS, Ployer Momo8, Ployer Momo11, Ployer Momo12, FNF ifive X, FNF ifive mini, Prestigio 7.0 Pro Duo (5570C), Probox2 Ultimate, Minix Neo G4, Minix Neo X5, Minix Neo X5 mini, Minix Neo X3, ICOO D70PROII, Ampe A78, Imito MX1, Imito MX2, Rikomagic MK802 III, Rikomagic MK802 IIIs, Tronsmart MK808, Tronsmart MK808B, JMI Tab T970, Joyplus DR-7, Cozyswan MK809, Cozyswan MK809 II, Ugoos UG802, Ugoos UG802II, Ugoos UG007, Ugoos UG008, Measy U2A, Measy U2C, iball Slide i9702, Kilwa V73, Tomato V8,[61] Innovel I801B, DNS AirTab M76r, Danew Dslide972, Noblex NB8012, (Nexoc) Captiva Pad 10.1, Hisense Sero 7 LT, teXet TM-7047HD, teXet TM-9747, teXet TM-9747BT, teXet TM-9748


Rockchip RK3188
Mali400MP4 (http://linux-sunxi.org/Mali400)
28 nm
1600MHz
4
Radxa Rock
Asus MemoPad 8, Asus MemoPad 10, Toshiba Excite 7, Minix Neo X7/Neo X7 mini, GoTab GTQ97, Cube Pea II, Cube U30GT2, CloudnetGo CR9, iMito QX1, PIPO M8pro, PIPO M9, PIPO M7 PRO, Rikomagic MK802 IV, Ugoos UG802B, Ugoos UG007B, Ugoos MK809 III, Ugoos QC802, Measy U4B, Tronsmart MK908, Tronsmart T428, Measy U4B, Freelander PD800, FNF iFive x2, Vido Mini One, JXD S7800b, Tesco Hudl, SteelCore10III, teXet TM-9750HD, teXet TM-9757, teXet TM-9758, teXet TM-9767, teXet TM-9768H, Loosen RAM use Greenify, GoClever ORION 100, Medion LifeTab S7852


Samsung Exynos 4210
Mali400MP4 (http://linux-sunxi.org/Mali400)
45 nm
1200-1400MHz
2
Hardkernel ODROID-A, Origenboard
1200MHz: Samsung Galaxy S II, Samsung Galaxy Tab 7.0 Plus
1400MHz: Samsung Galaxy Note, Samsung Galaxy Tab 7.7, Meizu MX 2-Core (first 2-core model), Cotton Candy by FXI Tech, ORIGEN 4 Dual


Samsung Exynos 4412
Mali400MP4 (http://linux-sunxi.org/Mali400)
32 nm
1200-1400MHz
4
Hardkernel Odroid-X, ODROID-U, ODROID-Q, Odroid-U3
Hardkernel ODROID-U2, ODROID-X2, ODROID-U3, ODROID-Q2
Exynos 4412: Samsung Galaxy Note 10.1, Samsung Galaxy Camera, Lenovo K860, Newman N2, Ramos W30HD, Meizu MX 4-Core, ORIGEN 4 Quad, Hyundai T7 Tablet, Samsung Galaxy Pop, Samsung Galaxy Light, Lenovo P700i
Exynos 4412 Prime: Samsung Galaxy S III, Samsung Galaxy Note II, Meizu MX2, Samsung Galaxy Note 8.0, Samsung Galaxy NX, iberry Auxus CoreX4 3G, AndroidAgent, Samsung Galaxy Camera 2


ST-Ericsson Nova A9500
Mali400 (http://linux-sunxi.org/Mali400)
45 nm
1200MHz
2
Snowball
HTC Sensation Z710T, Lenovo LePhone S899t


ST-Ericsson NovaThor U8500
Mali400 (http://linux-sunxi.org/Mali400)
45 nm
1000MHz
2

Motorola XT760, HTC Desire 400 dual sim Ontim WP8500, Samsung Galaxy Ace 2, Samsung Galaxy Beam, Samsung Galaxy S Advance, Samsung Galaxy S III Mini, Samsung Galaxy XCover 2, Shanda Bambook, Sony Xperia go, Sony Xperia P,[17] Sony Xperia Sola, Sony Xperia U, Yulong Coolpad CP7728


ST-Ericsson NovaThor U9500
Mali400 (http://linux-sunxi.org/Mali400)
45 nm
1000MHz
2




Texas Instruments OMAP 4430
PowerVR SGX540
45 nm
1000MHz
2
Pandaboard
BlackBerry PlayBook, Panasonic Eluga DL1, LG Prada 3.0, LG Optimus 3D P920, LG Optimus 3D Max, LG Optimus L9, Motorola Atrix 2, Motorola Droid 3/Milestone 3, Motorola Droid Bionic, Motorola Droid RAZR, Motorola Xyboard, phyCORE-OMAP4460/OMAP4430 SOM, Samsung Galaxy S II (GT-I9100G), Samsung Galaxy Tab 2 (7.0), Samsung Galaxy Tab 2 (10.1), TianyeIT CIP411, LGP925 Thrill AT&T, Amazon Kindle Fire, Archos 80 (Gen 9), Archos 101 (Gen 9), Barnes and Noble Nook Tablet, Archos 80 Turbo (Gen 9) 1.0/1.2 GHz, Archos 101 Turbo (Gen 9) 1.0/1.2 GHz, SmartDevices SmartQ Ten3 (T15), Google Glass, Sony NWZ-ZX1


Texas Instruments OMAP 4460
PowerVR SGX540
45 nm
1200MHz
2
Pandaboard ES
Samsung Galaxy Nexus, Archos 80 Turbo (Gen 9) 1.5 GHz & 1.2 GHz, Archos 101 Turbo (Gen 9) 1.5 GHz & 1.2 GHz, Huawei Ascend D1, Huawei Ascend P1/P1S, Sharp Aquos Phone 104SH, Variscite VAR-SOM-OM44, Nexus Q, BlackBerry Playbook 4G LTE, Kindle Fire HD 7" (1st generation), BlackBerry Dev Alpha


Texas Instruments OMAP 4470
PowerVR SGX544
45 nm
1500MHz
2

ARCHOS 101XS, ARCHOS TV Connect, SmartDevices T30, Kindle Fire HD 8.9", Kobo Arc, BlackBerry Dev Alpha B, Samsung Galaxy Premier, Blackberry Z10, SmartQ X7, ARCHOS 97XS, Nook HD/HD+, Kindle Fire HD 7" (2nd generation)


Trident PNX8473/83/91
PowerVR SGX531


1




VIA WonderMedia WM8850
Mali400 (http://linux-sunxi.org/Mali400)
40 nm
1200MHz
1

MTB025 (http://www.cnx-software.com/2013/01/30/39-99-mtb025-android-ics-mini-pc-powered-by-wondermedia-wm8850/)


VIA WonderMedia WM8880
Mali400MP2 (http://linux-sunxi.org/Mali400)
40 nm
1500MHz
2




VIA WonderMedia WM8950
Mali400 (http://linux-sunxi.org/Mali400)
40 nm
1000MHz
1




VIA WonderMedia WM8980
Mali400MP2 (http://linux-sunxi.org/Mali400)
40 nm
1200MHz
2




Xilinx Zynq-7000 series
?
28 nm
1000MHz
2
?
?


ZiiLABS ZMS-20
ZiiLABS Stemcell
?
1500MHz
2
?
?


ZiiLABS ZMS-40
ZiiLABS Stemcell
?
1500MHz
4
?
?



As an example I take the most common encountered development board Cortex-A9, the Freescale i.MX6x. This SOM (System-on-a-Module) is made using an ARM Cortex-A9 single, dual, or quad-core CPU and a Vivante GC 880 (solo and dual lite) or GC2000 3D GPU (dual and quad) plus a GC320 2D GPU (all models) and a Vivante GC355 vector GPU (on dual and quad) (https://en.wikipedia.org/wiki/Vivante_Corporation) GPU. You choose your own carrier board with the SOM (http://solid-run.com/freescale-imx6-family/mix-match/) (at present CuBox Base, CuBox Pro, HummingBoard-Edge, HummingBoard-Gate)
Input voltage is 5V, power consumption (idle-max): 1-3W

Features : swp (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/CJHBGBBJ.html), half (https://en.wikipedia.org/wiki/Half-precision_floating-point_format), thumb (https://en.wikipedia.org/wiki/ARM_architecture#Thumb), fastmult (http://comments.gmane.org/gmane.linux.ports.arm.kernel/4578), VFP (https://en.wikipedia.org/wiki/ARM_architecture#Floating-point_.28VFP.29), edsp (http://www.arm.com/products/processors/technologies/dsp-simd.php), NEON (https://en.wikipedia.org/wiki/ARM_architecture#Advanced_SIMD_.28NEON.29), VFPv3 (https://en.wikipedia.org/wiki/ARM_architecture#Floating-point_.28VFP.29), tls (https://en.wikipedia.org/wiki/Thread-local_storage)
Pipeline : 8-11 stages, out-of-order, variable length, superscalar
2.5 DMIPS/MHz, giving the Freescale i.MX6x quad@1200 MHz: 2400 integer MIPS (Dhrystone) per CPU (theoretically it should be even 3000 MIPS).

Pro's for the HummingBoard/CuBox are:

The versailabilty of the design with four cariers boards and five different SOMs (i1, i2, i2eX, i4Pro, i4x4) to combine them with.

Con's -BOINC-wise- are here:

The mediocre performance,
The (too) high price for the multi-core variants (the i2eX Hummingboard comes at some $120, the i4Pro CuBox at $150, a i4x4 Hummingboard may exceed $200) and -this sounds familair-:
The as-yet inability to make really use of the -up to three- Vivante GPUs, that would deliver quite a punch when tamed. The Vivante GC2000 has four cores and achieves 24 GFLOPS.
The initial choice for the Hummingboard board-layout to be very much like the original Raspberry Pi, HummingBoard Base (discontinued) and HummingBoard Pro (also discontinued) seemed wise and logical, but turned against the original carrierboards with the advent of the Raspberry Pi B+ and Pi2.

Soon to be updated too...

Dirk Broer
11-17-2015, 04:03 PM
SBC's compared (scores on BOINC manager):

https://scontent-ams2-1.xx.fbcdn.net/hphotos-xlf1/t31.0-8/12240371_475652265939643_441097349726233913_o.jpg

Mind you: the values for the Raspberry 2 are those after a considerable bunch of updates for ARMHF and Integer related libraries and other files.
Out-of-the-box the Raspberry Pi 2@1000 MHz gets stuck at 292 MIPS floating point MIPS (Whetstone) per CPU and 1143 integer MIPS (Dhrystone) per CPU.

Dirk Broer
11-18-2015, 10:53 PM
Part four: The ARM Cortex-A5

The ARM Cortex-A5 SOC was designed to be the smallest, lowest cost and lowest power ARMv7-architecture Cortex A (A for Application) processor and as such was meant to replace the last ARM9 and ARM11 devices after 2009, the time when it was introduced. Being ARM's most energy-efficient ARMv7 applications processor upon its introduction date, the Cortex-A5 got more work done per unit of energy than previous ARM SOCs. This resulted in longer battery life and less heat dissipation in wearable and mobile devices. The processor’s small physical size also meant reduced manufacturing costs, reduced system leakage and increased low-cost integration. Compared to the Cortex-A9 processor, the Cortex-A5 achieved more than 50% power efficiency while maintaining around 70-75% of the same performance level, making it at the time ideal for wearable technology. Early at 45 nm produced Cortex-A5 SOCs, such as the Freescale Vybrid or the Atmel SAMA5D series, had the same low clock rates (266-600MHz) as the ARM9 and ARM11 devices they were meant to replace, but nowadays the 1500MHz Amlogic M805/S805 is the premier Cortex-A5 design produced on a 28 nm process.
By the way, did you know that since 2013 AMD Fusion APUs include a Cortex-A5 core as a security co-processor?


http://www.arm.com/White_Background_PNG_Cortex-A5.png


Year
CPU
Architecture
Cores
Production
Process
Speed
Diagram
Successor to
Succeeded by



2009

ARM Cortex-A5 (https://en.wikipedia.org/wiki/ARM_Cortex-A5)

ARMv7-A

1-4

45-28 nm

600-1500MHz

http://www.arm.com/Cortex-A5-chip-diagram-203.png (http://www.arm.com/Cortex-A5-chip-diagram-LG.png)

ARM926EJ-S
ARM1176JZ-S

ARM Cortex-A7 (32 bit)
ARM Cortex-A35(64 bit)






SOC
Example
GPU
Production
Process
Speed
Cores
SBC
Example(s)
Other
Example(s)


Actions Semiconductor ATM7029
Vivante GC1000 Plus
40 nm
1200MHz
4

Ainol NOVO10 Hero II


Amlogic M805/S805 (https://en.wikipedia.org/wiki/Amlogic)
Mali-450 MP2
28 nm
1500MHz
4

Odroid-C1, C1+ (https://en.wikipedia.org/wiki/Odroid)



InfoTMIC iMAPx820, iMAPx15
Mali-400MP2
40 nm
1200MHz
2




Qualcomm Snapdragon S1
Adreno 200
45 nm
600-1000MHz
1




Qualcomm Snapdragon S4 Play
Adreno 203
45 nm
1200MHz
2-4

CCE Motion Plus SK504, Cherry Mobile Flare S100, GeeksPhone Peak,
HTC Desire SV, HTC Desire X, HTC One SC,
Huawei Ascend G510, Huawei Ascend Y300, Huawei Ascend Plus (H881C),
Huawei Ascend G525, Huawei C8813Q/CM990 Evolución 3,
Karbonn Titanium S1, Lenovo A706, LG Optimus L7 II (Dual),
Nokia X, Nokia X+, Nokia XL, Orange Nivo, Samsung Galaxy Core,
Samsung Galaxy Infinite, Samsung Galaxy Win/Grand Quattro,
SÃ*ragon SP-5100, Smartfren Andromax C, ZTE/Vtelca V8200+,
ZTE Solar (Z795G), ZTE Majesty (Z796C), ZTE Savvy (Z750C)


Qualcomm Snapdragon 200
Adreno 203
45 nm
1400MHz
4

Archos 50 Platinum, Archos 45 Platinum, Archos 53 Platinum,
Bauhn WL-101GQC, BLU Studio 5.0 S, BLU Studio 5.3 S, Casper Via A3216,
CCE Motion Plus RK402, Coolpad 5950T Monster, Faea F1, Highscreen Boost 2,
Highscreen Omega Prime Mini, HTC Desire 500, HTC Desire 600, HTC Desire 601,
HTC Desire 700, Karbonn Titanium S1, Karbonn Titanium S5,
Micromax A113 Canvas Ego, Micromax A111 Canvas Doodle,
Micromax EG111 Canvas Duet II, Mito A355, Panasonic T11,
Panasonic P11, Philips Xenium W7555, Prestigio MultiPhone 5400 DUO,
Prestigio MultiPhone 5300 DUO, Samsung Galaxy Win, Samsung Galaxy Win Pro,
Uniscope U W2014, Xolo Q500, ZTE Blade V, ZTE Optik 2


Spreadtrum SC8810
Mali-400MP1
40 nm
1000MHz
1

Samsung Galaxy Young 2


Spreadtrum SC8825
Mali-400MP2
40 nm
1200MHz
2

Lenovo A390t


Telechips TCC892x (https://www.telechips.com/eng/Product/consumer_pro13.asp)
Mali-400MP1
? nm
1200MHz
2
SAA-250




As an example for a Cortex-A5 SBC I take the one I think is THE most popular: the Harkernel Odroid-C1. And there's a new Odroid-C1+ out now too, with full-sized HDMI port and power over micro USB, new model -with standard added heat sink to get rid of the 1500 MHz generated heat- is shown below:
http://dn.odroid.com/homebackup/201507/ODROID-C1+m.jpghttp://i2.hd-cdn.it/img/width660/height338/id449439_1.jpg
The Amlogic S805 SOC as used in the Odroid-C1 and C1+ is made using an ARM Cortex-A5 quad-core CPU and a Mali-450 MP2 GPU (https://en.wikipedia.org/wiki/Mali_(GPU)).
Input voltage is 5V, power consumption (idle-max): 0.7-2.3W

Features : swp, half, thumb, fastmult, VFP, edsp, NEON, VFPv4, tls
Pipeline : 8 stage, in-order, scalar
1.57 DMIPS/MHz, giving


Odroid C1@1500MHz - Android 4.4.4: 623 floating point MIPS (Whetstone) per CPU, 2489 integer MIPS (Dhrystone) per CPU as per BOINC manager.


Pro's in case of the Odroid-C1/C1+ are the low price (at Raspberry Pi level) coupled with the high MHz, as the ARM Cortex-A5 processor is meant to be the smallest, lowest cost and lowest power ARMv7 application processor. Due to its high speed it blazes past the stock Raspberry Pi2, performance wise. Hardwarekernel also has a number of add-on boards, such as touch screen and hifi.

Con's are the somewhat limited instruction set (as compared to the earlier Cortex-A8 and -A9 and the later Cortex-A7 cores) and the fact that its dual core Mali-450 MP2 GPU hasn't been tamed yet too, OpenCL-BOINC-wise. It is quite powerful -compared to some other SBC GPUs- at 14.6 GFLOP per core.

Nflight
11-19-2015, 04:24 PM
Such Detail you are amazing Dirk :blob3: