Results 1 to 8 of 8

Thread: SBC ARM boards: an overview

  1. #1
    Join Date
    Sep 2010
    Location
    Leiden, the Netherlands
    Posts
    4,372

    SBC ARM boards: an overview

    Year Core Architecture Diagram SOC
    Example
    SBC
    Example(s)
    2003
    ARMv6
    Broadcom BCM2835, BCM21553
    VIA WonderMedia WM87x0
    Raspberry Pi A, A+, B, B+, Odroid-W
    Via APC 8750
    2005
    ARMv7-A
    Texas Instruments Sitara AM335x, OMAP 3
    Allwinner A10, A13
    Apple A4
    Freescale i.MX5x
    Rockchip RK2918, RK2906
    Samsung Exynos 3110, S5PC110, S5PV210
    ZiiLABS ZMS-08
    BeagleBone Black
    Cubieboard, Gooseberry
    2007
    ARMv7-A
    Freescale i.MX6x
    Actions ATM702x, ATM703x
    Altera Cyclone V,
    Arria V/10
    Amlogic AML8726, MX, M6x, M801, M802/S802, S812, T866
    Apple A5, A5X
    Broadcom VideoCore BCM21xxx, BCM28xxx
    HiSilicon K3V2
    Leadcore LC1810, LC1811
    MediaTek MT65xx
    Nvidia Tegra, 2, 3, 4i
    Nufront NuSmart 2816M, NS115, NS115M
    Renesas EMMA EV2, R-Car H1, RZ/A
    Rockchip RK292x, RK30xx, RK31xx
    Samsung Exynos 4
    ST-Ericsson NovaThor
    Telechips TCC8803
    Texas Instruments OMAP 4
    VIA WonderMedia WM88x0, 89x0
    Xilinx Zynq-7000
    ZiiLABS ZMS-20, ZMS-40
    CuBox, HummingBoard, Udoo
    2009
    ARMv7-A
    Amlogic M805/S805
    Actions Semiconductor ATM702x
    Atmel SAMA5D3
    Qualcomm Snapdragon S4 Play, 200
    InfoTMIC iMAPx820, iMAPx15
    Telechips TCC892x
    Odroid-C1, C1+

    Year Cortex
    Application
    Core
    Architecture Diagram SOC
    Example
    SBC
    Example(s)
    2010
    ARMv7-A
    nVidia Tegra 4, K1
    Allwinner A80
    HiSilicon K3V3
    MediaTek MT6599
    Nvidia Tegra 4, K1
    Renesas R-Car H2
    Samsung Exynos 5
    Texas Instruments OMAP 5, DRA7xx
    The Nvidia Tegra K1, as used in the Jetson TK1, is made using an ARM Cortex-A15 quad-core CPU and a Kepler SMX GPU (comparable with a GeForce GTX 770 in features and of 300 GFLOP power)
    Input voltage is 12V, power consumption (idle-max): 3-12W

    Features : Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT
    Pipeline : 15 stage integer/17–25 stage floating point pipeline, with out-of-order speculative issue 3-way superscalar execution pipeline.
    3.5-4.0 DMIPS/MHz, giving

    floating point MIPS (Whetstone) per CPU, integer MIPS (Dhrystone) per CPU

    You don't see many of these high powered ARM SOCs on their own, most Cortex-A15 cores are found in a big.LITTLE implementation, a power-optimization technology where the high-performance 'big' Cortex-A15 cores are combined with more efficient 'LITTLE' CPU cores (the Cortex-A7) to deliver peak-performance capacity, higher sustained performance and increased parallel processing performance at significantly lower average power. Examples are the Samsung Exynos 5 Octa's and the Allwinner A80.


    Year Cortex
    Application
    Core
    Architecture Diagram SOC
    Example
    SBC
    Example(s)
    2011
    ARMv7-A
    Allwinner-A2x, A3x, H3
    Broadcom VideoCore BCM2836, BCM23550
    Freescale QorIQ LS10xx
    Leadcore LC1813, LC1913
    Marvell Armada PXA1920
    MediaTek MT65xx
    Qualcomm Snapdragon 200, 400
    Last edited by Dirk Broer; 11-18-2015 at 10:28 PM.


  2. #2
    Join Date
    Sep 2010
    Location
    Leiden, the Netherlands
    Posts
    4,372
    As the 'SBC ARM boards: an overview' shows all the signs of becoming overly long and unreadable I will cut it up into pieces.
    This will leave the original posting a large table giving an overview of ARM-based SBCs, just as was originally meant.

    Here's part one: ARM11
    The ARM11 is an important landmark in ARM history. From here on ARM split the design into Application CPUs (Cortex-A), Real-time CPUs (Cortex-R) and Microcontroller CPUs (Cortex-M).
    The ARM11MPCore, one of the ARM11 designs, became the first multi-core ARM chip. The ARM11 was then (2002-2003) also leap forward in performance, as is shown here when compared with its predecessor, the ARM926EJ-S:

    Year CPU Architecture Cores Production
    Process
    Speed Diagram Successor to Succeeded by
    2002
    ARM1136J(F)-S
    ARMv6
    1
    90nm
    65nm
    40nm
    600MHz
    1000MHz
    1000MHz
    ARM926EJ-S
    Cortex-A8
    Cortex-A5
    2003
    ARM1156T2-S
    ARMv6
    1
    90nm
    600MHz
    ARM968E-S
    ARM946E-S
    Cortex-R4
    2003
    ARM1176J(F)-S
    ARMv6
    1
    65nm
    40nm
    482-772MHz
    1000MHz
    ARM926EJ-S
    Cortex-A8
    Cortex-A5
    2005
    ARM11MPCore
    ARMv6
    1-4
    65nm
    865 (single core) -
    751MHz (Dual core)
    732MHz (Quad core)
    ARM926EJ-S
    Cortex-A5

    CPU SOC Examples SBC Examples Other Device
    Example(s)
    ARM1136J(F)-S CSR Quatro 4230
    Freescale i.MX3x
    original Zune 30 GB,
    Toshiba Gigabeat S,
    Kindle DX
    Freescale MXC300-30
    Nokia E63,
    Nokia E71,
    Nokia 5800,
    Nokia E51,
    Nokia 6700 Classic,
    Nokia 6120 Classic,
    Nokia 6210 Navigator,
    Nokia 6220 Classic,
    Nokia 6290,
    Nokia 6710 Navigator,
    Nokia 6720 Classic,
    Nokia E75,
    Nokia N97,
    Nokia N81
    Qualcomm MSM7200
    Eten Glofiish,
    HTC TyTN II,
    HTC Nike,
    HTC Touch Dual,
    HTC Touch Cruise,
    HTC S730
    Qualcomm MSM7201A
    HTC Dream,
    HTC Magic,
    HTC Diamond,
    T-Mobile Comet US(Huawei Ideos U8150),
    HTC Touch Pro
    Qualcomm MSM7225
    Qualcomm MSM7227
    Samsung Galaxy Ace,
    Samsung Galaxy Mini,
    ZTE Link,
    HTC Wildfire S,
    HTC Legend, HTC Aria,
    Viewsonic ViewPad 7,
    BlackBerry Curve
    Texas Instruments OMAP2 Series
    Nokia E90,
    Nokia N93,
    Nokia N95,
    Nokia N82,
    Zune,
    BUGbase,
    Nokia N800,
    Nokia N810,
    Motorola RIZR Z8
    ARM1156T2-S
    ARM1176J(F)-S Ambarella A5s, A7, A7L
    Broadcom BCM2835, BCM21553
    Cavium ECONA CNS3000 series
    Infotmic IMAPX210/220
    MediaTek MTK6573
    Mindspeed (now Macom) Comcerto 1000
    nVidia GoForce 6100
    PLX Technology NAS782x
    Qualcomm Atheros AR7400
    Qualcomm MSM7627
    Palm Pixi,
    LG Optimus V (VM670),
    Motorola Calgary/Devour
    Samsung S3C6410
    Barnes & Noble Nook (1st Edition),
    Samsung Omnia II,
    Samsung Moment,
    Samsung M910 Intercept,
    SmartQ 5,
    Samsung I5700
    Samsung S5L87xx
    Samsung S5L8900
    Apple iPhone,
    Apple iPod touch 1G,
    Apple iPhone 3G
    ST-Ericsson Nomadik STn882x
    Telechips TCC890x
    Xcometic KVM2800
    VIA WonderMedia WM8750
    NZXT Doko PC
    ARM11MPCore CSR Quatro 45xx, 53xx series
    Nintendo CTR-CPU
    Nvidia Tegra APX 2500/2600, 600/650

    The Broadcom BCM2835 SOC as used in the Raspberry Pi's is made using an ARM1176JZF-S single-core CPU and a VideoCore 4 GPU.
    These ARM11 chips are the last of their line (the ARMv6 architecture line) and were originally manufactured using 90nm, later with 65nm and even 40nm technology.
    Considering the stock speed of the Raspberry Pi their SOC was made using a 65nm proccess.
    The easy overclocking and lower power use of the '+' models may perhaps be due to the newer SOCs being made on 40nm.

    Input voltage is 5V, power consumption varies from model to model:
    Version Off Average Max
    A
    0.15W
    0.80W
    1.07W
    A+
    0.125W
    0.48W
    0.76W
    B
    0.62W
    2.12W
    2.45W
    B+
    0.35W
    1.15W
    1.20W
    Data from cnx-software.com and mikronauts.com

    CPU Features : swp, half, thumb, fastmult, VFP, edsp, java/jazelle, tls
    Pipeline : 8 stage, in-order, scalar
    MIPS @ MHz : 1.25 DMIPS/MHz, giving:
    Speed
    in MHz
    Floating point
    MIPS (Whetstone)
    per CPU
    integer
    MIPS (Dhrystone)
    per CPU
    700 (stock speed)
    222
    926
    800 (modest overclock)
    266
    1073
    900 (medium overclock)
    -
    -
    950 (high overclock)
    323
    1275
    1000 (turbo overclock)
    338
    1355
    Mind you: overclocking can result in SD card corruption!

    Pro's for the ARM11-based Raspberries are:
    • the abundance of hard- and software specially made for it,
    • the low price plus
    • the large community that is active with it.

    Con's (BOINC-wise) are
    • the low performance (the Pi is meant for education, not for crunching),
    • the single core and
    • the as yet inability to make use of the SOCs 24 GFLOP GPU.

    But when your done playing with BOINC on the Raspberry Pi you can still use it for e.g. domotica, prototyping, etc.
    I'm going to test it soon to see whether I can run BOINC with the power delivered from a Waka Waka solar cell. Udate: Yes, you can!
    If the guys at Raspberry want to extend the life of the ARM11 they can come up with a Raspberry Pi Model C with -amongst others- a quad-core ARM11MP, 2GB of RAM and GigaBit Ethernet.

    Project Avg. running time WU in hours Avg. credit per WU Green light? Orange light? Red light?
    Albert@Home
    25
    100
    Yes
    -
    -
    Asteroids@Home
    tbd
    tbd
    -
    Yes
    -
    Collatz@Home
    tbd
    tbd
    Yes
    -
    -
    Einstein@Home
    25
    63
    Yes
    -
    -
    Enigma@Home
    5
    30
    Yes
    -
    -
    FiND@Home
    tbd
    tbd
    Yes
    -
    -
    MilkyWay@Home
    tbd
    tbd
    -
    Yes
    -
    QCN (Quake Catcher Network)
    tbd
    tbd
    -
    Yes*
    -
    Radioactive@Home
    tbd
    tbd
    Yes*
    -
    -
    Seti@Home
    110
    -
    -
    Yes
    -
    theSkyNet POGS
    47.3
    186
    Yes
    -
    -
    WUProp
    3.5
    7
    -
    Yes
    -
    Yoyo@Home
    tbd
    28.86
    Yes
    -
    -
    ]
    Legenda
    tbd=To be determined
    *=Needs a sensor though
    - =
    no data/not applicable
    Green light=
    Works out-of-the-box
    Orange light=
    Needs some fiddling
    Red light=
    Refuses to work
    Soon to be updated yet again...
    Last edited by Dirk Broer; 11-18-2015 at 10:16 PM.


  3. #3
    Join Date
    Apr 2005
    Location
    US
    Posts
    2,229
    Interesting reading! :-) We were just notified last month that the utility company was raising the electric cost effective this month. So the day is approaching where we are going to have to play with more efficient systems if we want to play. Sign of the times I guess. :-)

  4. #4
    Join Date
    Sep 2010
    Location
    Leiden, the Netherlands
    Posts
    4,372
    Part two: ARM Cortex-A8

    The ARM Cortex-A8 processor was introduced to the market in 2005 as a successor to the ARM11. It was ARMs first processor supporting the then new ARMv7A architecture. Compared to the ARM11 core the Cortex-A8 is a dual-issue superscalar design, achieving roughly twice the instructions executed per clock cycle.

    Year CPU Architecture Cores Production
    Process
    Speed Diagram Successor to Succeeded by
    2005
    ARMv7-A
    1
    65nm
    55nm
    45nm
    600-1500MHz
    ARM1176J(F)-S
    ARM Cortex-A9
    ARM Cortex-A5

    SOC
    Example
    GPU Prduction
    Process
    Speed SBC
    Example(s)
    Other
    Example(s)
    Allwinner A10
    55nm
    1000MHz
    Allwinner A10s
    55nm
    1000MHz
    Allwinner A13
    55nm
    1000MHz
    Apple A4
    45nm
    800-1000MHz
    iPad,
    iPhone4,
    iPod Touch (4th generation),
    AppleTV2
    Freescale i.MX5x
    65nm
    600-1000MHz
    eReaders
    Tablets
    Rockchip RK2906,
    RK2918
    55nm
    1000-1200MHz
    Newpad T3,
    Cube U9GT2,
    Teclast A15,
    Cube U15GT,
    WoPad i8,
    Videocon VT71,
    Archos 7c,
    Archos 10c,
    Archos 8 G2,
    Archos Arnova G3,
    Archos Arnova 10 G2,
    Cresta CTP810,
    Yanddao N12,
    Vi32W,
    ProTab 25,
    DIT 7010
    Samsung 3110
    S5PC110
    Hummingbird
    Exynos 3 Single
    45nm
    1000MHz
    Odroid (original)
    at 1 GHz:
    Samsung Galaxy S line,
    Samsung Wave S8500,
    Samsung Wave II S8530,
    Samsung Galaxy Tab,
    Samsung Droid Charge,
    Samsung Exhibit 4G,
    Google Nexus S,
    Meizu M9,
    Samsung Stratosphere
    at 1.2 GHz:
    Samsung Infuse 4G
    Samsung S5PV210
    45nm
    800-1000MHz
    armStone-A8
    Texas Instruments OMAP 3530
    65nm
    720MHz
    Texas Instruments Sitara AM335x
    45nm
    720-1000MHz
    BeagleBone,
    BeagleBone Black,
    Embest SBC8600B,
    MYIR MYD-AM335X,
    phyBOARD-Wega
    Texas Instruments Sitara AM370x
    45nm
    1000MHz
    BeagleBoard-xM,
    Gumstix Overo EarthSTORM,
    Gumstix Overo Summit

    The Texas Instruments Sitara AM3358 and AM3359 SOCs as used in the BeagleBone Black are made using an ARM Cortex-A8 single-core CPU and a Power VR SGX530 GPU.
    Input voltage is 5V, power consumption (idle-max): 1.05-2.3W
    CPU : A Texas Instruments ARMv7-A compatible processor ARM Cortex-A8, rev 2 (v7l) aka Sitara AM3358BZCZ100 in my BeagleBone Black Rev.C
    Features : swp, half, thumb, fastmult, VFP, edsp, ThumbEE, NEON, VFPv3, tls
    Pipeline : 13 stage, in-order, dual issue, superscalar.

    2.01 DMIPS/MHz, giving
    Speed in MHz OS Floating Point MIPS (Whetstone) per CPU Integer MIPS (Dhrystone) per CPU
    1000
    Beagle Debian
    184
    2047
    1000
    Android 4.4.4 "KitKat"
    277
    1607

    Pro's for the BeagleBone are:
    • The hard- and software specially made for it -be it less than the Raspberry-,
    • The relatively low price -but more expensive than the Raspberry- plus
    • The community that is active with it.
    • It runs very stable from the onboard eMMC, no corruption problems.

    Con's -BOINC-wise- are here too:
    • The low performance,
    • The single core and
    • The as yet inability to make really use of the SOCs Power VR SGX530 GPU, be it that the MIPs and GFLOPS are too low to be of any use, BOINC-wise.


    So it is stronger than the Raspberry B+ on integer MIPS performance, but a little bit behind in the floating point MIPS -when using the original Ångström or Beagle Debian OS. Installing Android brought a huge increase of floating point performance at the cost of some integer performance, proving the so-called floating point weakness of the BBB software based.
    But how does that translate into real-life performance? Running BOINC on an ARMv7 architecture CPU under Linux is no piece of cake. Most projects do NOT have an application for the platform (=OS/CPU combination), you have to compile them yourself. This I circumvented by first installing Android 4.4.4 and then installing Native BOINC.

    Project Avg. running time in hours Avg. credit Green light? Orange light? Red light?
    Albert@Home
    38
    123
    Yes
    -
    -
    Asteroids@Home
    tbd, first WU seems lost
    tbd
    Yes
    -
    -
    Collatz@Home
    tbd
    tbd
    Yes
    tbd
    tbd
    Einstein@Home
    44
    63
    Yes
    -
    -
    Enigma@Home
    3.1
    45
    Yes
    -
    -
    GPUGrid
    tbd
    tbd
    tbd
    tbd
    tbd
    Moo! Wrapper
    7
    72
    Yes
    tbd
    tbd
    PrimeGrid
    tbd
    tbd
    tbd
    tbd
    tbd
    QCN (Quake Catcher Network)
    tbd
    tbd
    Yes*
    -
    -
    Radioactive@Home
    tbd
    tbd
    -
    -
    No*
    Ralph@Home
    tbd
    tbd
    tbd
    tbd
    tbd
    Rosetta@Home
    tbd
    tbd
    tbd
    tbd
    tbd
    Seti@Home
    tbd
    tbd
    tbd
    tbd
    tbd
    Seti@Home Beta
    tbd
    tbd
    Yes
    -
    -
    The SkyNet POGS
    125
    361
    Yes
    -
    -
    World Community Grid
    11.6 (FAAH)
    4.2 (OET)
    -
    Yes
    -
    -
    WUProp
    6
    14
    Yes
    -
    -
    Yafu
    tbd
    tbd
    tbd
    tbd
    tbd
    Yoyo@Home
    1.7
    10.31
    Yes
    -
    -
    ]
    Legenda
    tbd=To be determined
    *=Would need a sensor
    - =
    no data/not applicable
    Green light=
    Works out-of-the-box
    Orange light=
    Needs some fiddling
    Red light=
    Refuses to work
    Soon to be updated too...
    Last edited by Dirk Broer; 11-18-2015 at 10:14 PM.


  5. #5
    Join Date
    Sep 2010
    Location
    Leiden, the Netherlands
    Posts
    4,372
    Part three: The ARM Cortex-A9

    The ARM Cortex-A9 processor was introduced to the market in 2008 as a successor to the ARM Cortex-A8. It was ARMs first Cortex A-processor supporting multiple cores on the then new ARMv7-A architecture (there is an earlier ARMv6 based multi-core ARM11 which might give the original Raspberry series an extra extension of life). Compared to their first ARMv7-A SOC, the ARM Cortex-A8, the Cortex-A9 offered an overall performance enhancement of well above 50%. Unfortunately some licencees saw that as an argument to sell their Cortex-A9 products at a much higher price too...
    Year CPU Architecture Cores Production
    Process
    Speed Diagram Successor to Succeeded by
    2008
    ARMv7-A
    1, 2 or 4 65nm-20nm 800-2000MHz ARM Cortex-A8 ARM Cortex-A15(32-bit)
    ARM Cortex-A53(64-bit)

    SOC
    Example
    GPU Production
    Process
    Speed Cores SBC
    Example(s)
    Other
    Example(s)
    Actions ATM7021A PowerVR SGX540 40 nm? 1300MHz 2
    Actions ATM7039c PowerVR SGX544MP 40 nm 1600MHz 4
    Actions ATM7039s PowerVR SGX544MP 28 nm 1600MHz 4
    Actions ATM7059 PowerVR SGX544MP 28 nm 1600MHz 4
    Actions S500 PowerVR SGX544MP 28 nm 1300MHz 4 LeMaker Guitar
    ActDuino S500
    Altera Cyclone V TES Electronic Solutions D/AVE HD (opt) 28 nm 925MHz 1-2
    Altera Arria V TES Electronic Solutions D/AVE HD (opt) 28 nm 1050MHz 1
    Altera Arria 10 TES Electronic Solutions D/AVE HD (opt) 20 nm 1500MHz 2
    Amlogic AML8726M ARM Mali-400 65 nm
    Amlogic AML8726MX/M6 ARM Mali-400MP2 40 nm
    Amlogic M801, M802/S802 ARM Mali-450MP6 28 nm 4
    Apple A5 PowerVR SGX543MP2 45 nm
    32 nm
    800-1000MHz 1-2 iPhone 4S, iPod Touch (5th generation), iPad 2, iPad Mini (1st generation)
    Apple A5X PowerVR SGX543MP4 45 nm 1000MHz 2 iPad 3rd generation
    Broadcom BCM21664T VideoCore 4 40 nm 1200MHz 2 Samsung Galaxy Ace Style, Samsung Galaxy Trend Plus
    Broadcom BCM28155 VideoCore 4 40 nm 1200MHz 2 Samsung Galaxy S II Plus, Samsung Galaxy Grand, Samsung Galaxy S Duos 2 and Amazon Fire TV Stick
    Freescale i.MX6x SoloLite Vivante GC320 (2D); Vivante GC355 (vector) 40 nm 1000MHz 1
    Freescale i.MX6x Solo Vivante GC880 (3D); Vivante GC320 (2D) 40 nm 1000MHz 1 CuBox i1, HummingBoard i1, Udoo Neo, Wandboard Solo
    Freescale i.MX6x DualLite Vivante GC880 (3D); Vivante GC320 (2D) 40 nm 1000MHz 2 CuBox i2, HummingBoard i2, Udoo DualBasic
    Freescale i.MX6x Dual Vivante GC2000 (3D); Vivante GC320 (2D); Vivante GC355 (vector) 40 nm 1200MHz 2 CuBox i2eX, HummingBoard i2eX, Udoo Dual, Wandboard Dual
    Freescale i.MX6x Quad Vivante GC2000 (3D); Vivante GC320 (2D); Vivante GC355 (vector) 40 nm 1200MHz 4 CuBox i4Pro, CuBox i4x4, HummingBoard i4Pro, HummingBoard i4x4, Udoo Quad, Wandboard Quad
    HiSilicon K3V2(Hi3620) Vivante GC4000 40 nm 1500MHz 4 Huawei MediaPad 10 FHD, Huawei Ascend D2 (U9510), Huawei Honor 2 (U9508), Huawei Ascend P6S, Huawei Ascend P2, Huawei Ascend Mate, Lenovo A376, STREAM X (GSL07S)
    HiSilicon K3V2E Vivante GC4000 28 nm 1500MHz 4 Huawei Honor 3
    Mediatek MT6575 PowerVR SGX531 Ultra 40 nm 1000MHz 1 LG Optimus L5 II
    Nvidia Tegra 2 AP20H/T20 GeForce ULP 40 nm 1000-1200MHz 2 AP20H: Motorola Atrix 4G, Motorola Droid X2, Motorola Photon, LG Optimus 2X / LG Optimus Dual P990 / Optimus 2x SU660, Samsung Galaxy R, Samsung Captivate Glide, ZTE Mimosa X, Micromax Superfone A85, T-Mobile G2X P999, Acer Iconia Tab A200 and A500, LG Optimus Pad, Motorola Xoom, Sony Tablet S, Dell Streak 7, Dell Streak Pro, Asus Slider, Toshiba Thrive tablet, T-Mobile G-Slate
    T20: Avionic Design Tamonten Processor Board, Exper EasyPad, Notion Ink Adam tablet, Olivetti OliPad 100, Point of View Mobii 10.1, ViewSonic G Tablet, ViewSonic ViewPad 10s, ASUS Eee Pad Transformer, Samsung Galaxy Tab 10.1, Toshiba AC100, Toshiba Folio 100, Advent Vega, Hannspree Hannspad, Aigo n700, CompuLab Trim-Slice nettop, E-Noa Interpad, Malata Tablet Zpad, MSI 10-inch (250 mm) tablet, Toradex Colibri T20, Lenovo IdeaPad Tablet K1, Lenovo ThinkPad Tablet, Velocity Micro Cruz Tablet L510, Zyrex Onepad SP1110, Zyrex Onepad SP1113G, Acer Iconia Tab A100
    Nvidia Tegra 3 T30, T30L, T33, AP33 GeForce ULP 40 nm 1200-1600MHz 4+1 Toradex Apalis T30, Toradex Colibri T30 T30: Asus Eee Pad Transformer Prime, IdeaTab K2/LePad K2, Acer Iconia Tab A510, Acer Iconia Tab A700, ZTE Era, ZTE PF 100, ZTE T98, Toshiba AT270, Asus VivoTab RT, Fuhu Inc. nabi2 Tablet, Tesla Model S, Kungfu K3, Goophone I5, Olivetti Olipad 3, Microsoft Surface, Lenovo IdeaPad Yoga 11, Nvidia Cardhu developer tablet, Realpad Bunaken (RL-P700-QC)
    T30L: Asus Transformer Pad TF300T, ASUS MeMO Pad Smart ME301T, Microsoft Surface, Nexus 7 (2012 version), Sony Xperia Tablet S, Acer Iconia Tab A210, WEXLER.TAB 7t, Lenovo IdeaTab A2109, Toshiba AT300 (Excite 10), Toshiba AT10-A (Excite Pure), BLU Quattro 4.5, BLU Quattro 4.5 HD HP Slate 7 Plus
    T33: Asus Transformer Pad Infinity (TF700T), Fujitsu ARROWS X F-02E, Ouya, HTC One X+, Fujitsu Arrows Tab F-05E
    AP33: LG Optimus 4X HD, Fujitsu Arrows X F-10D, HTC One X, XOLO Play T1000
    Nvidia Tegra 4i GeForce ULP 28 nm 2000MHz 4+1 Blackphone, LG G2 mini LTE, Wiko Highway 4G, Explay 4Game, Wiko Wax, QMobile Noir LT-250
    Rockchip RK2928 Mali400 55 nm 1000MHz 1 Cube U25GT, Double Power(Dopo) M-975, Touchmate TM-MID720, Denver TAC-70072
    Rockchip RK3066/68 Mali400MP4 40 nm 1600MHz 2 Monster M7 tablet, HP Slate 7, Inar إينار, i.onik TP 10.1-1500DC-KB, Colorovo CityTab Vision 10.1", Teclast P76e Dual-core, Teclast P76t, Teclast P98, Teclast P85, Window (YuanDao) N70S, Window (YuanDao) N101 I, Cube U9GT3, Cube U9GT4, Cube U21GT, PIPO S2, Cube U30GT, Cube U9GT V, Cube U18GT Elite Dual Core, BlueBerry NetCat M-12, CHUWI V8 Dual-core, CHUWI V99, Aoson M11, Pipo S1, Ployer Momo7 IPS, Ployer Momo8, Ployer Momo11, Ployer Momo12, FNF ifive X, FNF ifive mini, Prestigio 7.0 Pro Duo (5570C), Probox2 Ultimate, Minix Neo G4, Minix Neo X5, Minix Neo X5 mini, Minix Neo X3, ICOO D70PROII, Ampe A78, Imito MX1, Imito MX2, Rikomagic MK802 III, Rikomagic MK802 IIIs, Tronsmart MK808, Tronsmart MK808B, JMI Tab T970, Joyplus DR-7, Cozyswan MK809, Cozyswan MK809 II, Ugoos UG802, Ugoos UG802II, Ugoos UG007, Ugoos UG008, Measy U2A, Measy U2C, iball Slide i9702, Kilwa V73, Tomato V8,[61] Innovel I801B, DNS AirTab M76r, Danew Dslide972, Noblex NB8012, (Nexoc) Captiva Pad 10.1, Hisense Sero 7 LT, teXet TM-7047HD, teXet TM-9747, teXet TM-9747BT, teXet TM-9748
    Rockchip RK3188 Mali400MP4 28 nm 1600MHz 4 Radxa Rock Asus MemoPad 8, Asus MemoPad 10, Toshiba Excite 7, Minix Neo X7/Neo X7 mini, GoTab GTQ97, Cube Pea II, Cube U30GT2, CloudnetGo CR9, iMito QX1, PIPO M8pro, PIPO M9, PIPO M7 PRO, Rikomagic MK802 IV, Ugoos UG802B, Ugoos UG007B, Ugoos MK809 III, Ugoos QC802, Measy U4B, Tronsmart MK908, Tronsmart T428, Measy U4B, Freelander PD800, FNF iFive x2, Vido Mini One, JXD S7800b, Tesco Hudl, SteelCore10III, teXet TM-9750HD, teXet TM-9757, teXet TM-9758, teXet TM-9767, teXet TM-9768H, Loosen RAM use Greenify, GoClever ORION 100, Medion LifeTab S7852
    Samsung Exynos 4210 Mali400MP4 45 nm 1200-1400MHz 2 Hardkernel ODROID-A, Origenboard 1200MHz: Samsung Galaxy S II, Samsung Galaxy Tab 7.0 Plus
    1400MHz: Samsung Galaxy Note, Samsung Galaxy Tab 7.7, Meizu MX 2-Core (first 2-core model), Cotton Candy by FXI Tech, ORIGEN 4 Dual
    Samsung Exynos 4412 Mali400MP4 32 nm 1200-1400MHz 4 Hardkernel Odroid-X, ODROID-U, ODROID-Q, Odroid-U3
    Hardkernel ODROID-U2, ODROID-X2, ODROID-U3, ODROID-Q2
    Exynos 4412: Samsung Galaxy Note 10.1, Samsung Galaxy Camera, Lenovo K860, Newman N2, Ramos W30HD, Meizu MX 4-Core, ORIGEN 4 Quad, Hyundai T7 Tablet, Samsung Galaxy Pop, Samsung Galaxy Light, Lenovo P700i
    Exynos 4412 Prime: Samsung Galaxy S III, Samsung Galaxy Note II, Meizu MX2, Samsung Galaxy Note 8.0, Samsung Galaxy NX, iberry Auxus CoreX4 3G, AndroidAgent, Samsung Galaxy Camera 2
    ST-Ericsson Nova A9500 Mali400 45 nm 1200MHz 2 Snowball HTC Sensation Z710T, Lenovo LePhone S899t
    ST-Ericsson NovaThor U8500 Mali400 45 nm 1000MHz 2 Motorola XT760, HTC Desire 400 dual sim Ontim WP8500, Samsung Galaxy Ace 2, Samsung Galaxy Beam, Samsung Galaxy S Advance, Samsung Galaxy S III Mini, Samsung Galaxy XCover 2, Shanda Bambook, Sony Xperia go, Sony Xperia P,[17] Sony Xperia Sola, Sony Xperia U, Yulong Coolpad CP7728
    ST-Ericsson NovaThor U9500 Mali400 45 nm 1000MHz 2
    Texas Instruments OMAP 4430 PowerVR SGX540 45 nm 1000MHz 2 Pandaboard BlackBerry PlayBook, Panasonic Eluga DL1, LG Prada 3.0, LG Optimus 3D P920, LG Optimus 3D Max, LG Optimus L9, Motorola Atrix 2, Motorola Droid 3/Milestone 3, Motorola Droid Bionic, Motorola Droid RAZR, Motorola Xyboard, phyCORE-OMAP4460/OMAP4430 SOM, Samsung Galaxy S II (GT-I9100G), Samsung Galaxy Tab 2 (7.0), Samsung Galaxy Tab 2 (10.1), TianyeIT CIP411, LGP925 Thrill AT&T, Amazon Kindle Fire, Archos 80 (Gen 9), Archos 101 (Gen 9), Barnes and Noble Nook Tablet, Archos 80 Turbo (Gen 9) 1.0/1.2 GHz, Archos 101 Turbo (Gen 9) 1.0/1.2 GHz, SmartDevices SmartQ Ten3 (T15), Google Glass, Sony NWZ-ZX1
    Texas Instruments OMAP 4460 PowerVR SGX540 45 nm 1200MHz 2 Pandaboard ES Samsung Galaxy Nexus, Archos 80 Turbo (Gen 9) 1.5 GHz & 1.2 GHz, Archos 101 Turbo (Gen 9) 1.5 GHz & 1.2 GHz, Huawei Ascend D1, Huawei Ascend P1/P1S, Sharp Aquos Phone 104SH, Variscite VAR-SOM-OM44, Nexus Q, BlackBerry Playbook 4G LTE, Kindle Fire HD 7" (1st generation), BlackBerry Dev Alpha
    Texas Instruments OMAP 4470 PowerVR SGX544 45 nm 1500MHz 2 ARCHOS 101XS, ARCHOS TV Connect, SmartDevices T30, Kindle Fire HD 8.9", Kobo Arc, BlackBerry Dev Alpha B, Samsung Galaxy Premier, Blackberry Z10, SmartQ X7, ARCHOS 97XS, Nook HD/HD+, Kindle Fire HD 7" (2nd generation)
    Trident PNX8473/83/91 PowerVR SGX531 1
    VIA WonderMedia WM8850 Mali400 40 nm 1200MHz 1 MTB025
    VIA WonderMedia WM8880 Mali400MP2 40 nm 1500MHz 2
    VIA WonderMedia WM8950 Mali400 40 nm 1000MHz 1
    VIA WonderMedia WM8980 Mali400MP2 40 nm 1200MHz 2
    Xilinx Zynq-7000 series ? 28 nm 1000MHz 2 ? ?
    ZiiLABS ZMS-20 ZiiLABS Stemcell ? 1500MHz 2 ? ?
    ZiiLABS ZMS-40 ZiiLABS Stemcell ? 1500MHz 4 ? ?

    As an example I take the most common encountered development board Cortex-A9, the Freescale i.MX6x. This SOM (System-on-a-Module) is made using an ARM Cortex-A9 single, dual, or quad-core CPU and a Vivante GC 880 (solo and dual lite) or GC2000 3D GPU (dual and quad) plus a GC320 2D GPU (all models) and a Vivante GC355 vector GPU (on dual and quad) GPU. You choose your own carrier board with the SOM (at present CuBox Base, CuBox Pro, HummingBoard-Edge, HummingBoard-Gate)
    Input voltage is 5V, power consumption (idle-max): 1-3W

    Features : swp, half, thumb, fastmult, VFP, edsp, NEON, VFPv3, tls
    Pipeline : 8-11 stages, out-of-order, variable length, superscalar
    2.5 DMIPS/MHz, giving the Freescale i.MX6x quad@1200 MHz: 2400 integer MIPS (Dhrystone) per CPU (theoretically it should be even 3000 MIPS).

    Pro's for the HummingBoard/CuBox are:
    • The versailabilty of the design with four cariers boards and five different SOMs (i1, i2, i2eX, i4Pro, i4x4) to combine them with.

    Con's -BOINC-wise- are here:
    • The mediocre performance,
    • The (too) high price for the multi-core variants (the i2eX Hummingboard comes at some $120, the i4Pro CuBox at $150, a i4x4 Hummingboard may exceed $200) and -this sounds familair-:
    • The as-yet inability to make really use of the -up to three- Vivante GPUs, that would deliver quite a punch when tamed. The Vivante GC2000 has four cores and achieves 24 GFLOPS.
    • The initial choice for the Hummingboard board-layout to be very much like the original Raspberry Pi, HummingBoard Base (discontinued) and HummingBoard Pro (also discontinued) seemed wise and logical, but turned against the original carrierboards with the advent of the Raspberry Pi B+ and Pi2.

    Soon to be updated too...
    Last edited by Dirk Broer; 12-08-2015 at 03:31 PM.


  6. #6
    Join Date
    Sep 2010
    Location
    Leiden, the Netherlands
    Posts
    4,372
    SBC's compared (scores on BOINC manager):



    Mind you: the values for the Raspberry 2 are those after a considerable bunch of updates for ARMHF and Integer related libraries and other files.
    Out-of-the-box the Raspberry Pi 2@1000 MHz gets stuck at 292 MIPS floating point MIPS (Whetstone) per CPU and 1143 integer MIPS (Dhrystone) per CPU.
    Last edited by Dirk Broer; 11-19-2015 at 05:23 PM.


  7. #7
    Join Date
    Sep 2010
    Location
    Leiden, the Netherlands
    Posts
    4,372
    Part four: The ARM Cortex-A5

    The ARM Cortex-A5 SOC was designed to be the smallest, lowest cost and lowest power ARMv7-architecture Cortex A (A for Application) processor and as such was meant to replace the last ARM9 and ARM11 devices after 2009, the time when it was introduced. Being ARM's most energy-efficient ARMv7 applications processor upon its introduction date, the Cortex-A5 got more work done per unit of energy than previous ARM SOCs. This resulted in longer battery life and less heat dissipation in wearable and mobile devices. The processor’s small physical size also meant reduced manufacturing costs, reduced system leakage and increased low-cost integration. Compared to the Cortex-A9 processor, the Cortex-A5 achieved more than 50% power efficiency while maintaining around 70-75% of the same performance level, making it at the time ideal for wearable technology. Early at 45 nm produced Cortex-A5 SOCs, such as the Freescale Vybrid or the Atmel SAMA5D series, had the same low clock rates (266-600MHz) as the ARM9 and ARM11 devices they were meant to replace, but nowadays the 1500MHz Amlogic M805/S805 is the premier Cortex-A5 design produced on a 28 nm process.
    By the way, did you know that since 2013 AMD Fusion APUs include a Cortex-A5 core as a security co-processor?

    Year CPU Architecture Cores Production
    Process
    Speed Diagram Successor to Succeeded by
    2009
    ARMv7-A
    1-4
    45-28 nm
    600-1500MHz
    ARM926EJ-S
    ARM1176JZ-S
    ARM Cortex-A7 (32 bit)
    ARM Cortex-A35(64 bit)


    SOC
    Example
    GPU Production
    Process
    Speed Cores SBC
    Example(s)
    Other
    Example(s)
    Actions Semiconductor ATM7029 Vivante GC1000 Plus 40 nm 1200MHz 4 Ainol NOVO10 Hero II
    Amlogic M805/S805 Mali-450 MP2 28 nm 1500MHz 4
    InfoTMIC iMAPx820, iMAPx15 Mali-400MP2 40 nm 1200MHz 2
    Qualcomm Snapdragon S1 Adreno 200 45 nm 600-1000MHz 1
    Qualcomm Snapdragon S4 Play Adreno 203 45 nm 1200MHz 2-4 CCE Motion Plus SK504, Cherry Mobile Flare S100, GeeksPhone Peak,
    HTC Desire SV, HTC Desire X, HTC One SC,
    Huawei Ascend G510, Huawei Ascend Y300, Huawei Ascend Plus (H881C),
    Huawei Ascend G525, Huawei C8813Q/CM990 Evolución 3,
    Karbonn Titanium S1, Lenovo A706, LG Optimus L7 II (Dual),
    Nokia X, Nokia X+, Nokia XL, Orange Nivo, Samsung Galaxy Core,
    Samsung Galaxy Infinite, Samsung Galaxy Win/Grand Quattro,
    SÃ*ragon SP-5100, Smartfren Andromax C, ZTE/Vtelca V8200+,
    ZTE Solar (Z795G), ZTE Majesty (Z796C), ZTE Savvy (Z750C)
    Qualcomm Snapdragon 200 Adreno 203 45 nm 1400MHz 4 Archos 50 Platinum, Archos 45 Platinum, Archos 53 Platinum,
    Bauhn WL-101GQC, BLU Studio 5.0 S, BLU Studio 5.3 S, Casper Via A3216,
    CCE Motion Plus RK402, Coolpad 5950T Monster, Faea F1, Highscreen Boost 2,
    Highscreen Omega Prime Mini, HTC Desire 500, HTC Desire 600, HTC Desire 601,
    HTC Desire 700, Karbonn Titanium S1, Karbonn Titanium S5,
    Micromax A113 Canvas Ego, Micromax A111 Canvas Doodle,
    Micromax EG111 Canvas Duet II, Mito A355, Panasonic T11,
    Panasonic P11, Philips Xenium W7555, Prestigio MultiPhone 5400 DUO,
    Prestigio MultiPhone 5300 DUO, Samsung Galaxy Win, Samsung Galaxy Win Pro,
    Uniscope U W2014, Xolo Q500, ZTE Blade V, ZTE Optik 2
    Spreadtrum SC8810 Mali-400MP1 40 nm 1000MHz 1 Samsung Galaxy Young 2
    Spreadtrum SC8825 Mali-400MP2 40 nm 1200MHz 2 Lenovo A390t
    Telechips TCC892x Mali-400MP1 ? nm 1200MHz 2 SAA-250

    As an example for a Cortex-A5 SBC I take the one I think is THE most popular: the Harkernel Odroid-C1. And there's a new Odroid-C1+ out now too, with full-sized HDMI port and power over micro USB, new model -with standard added heat sink to get rid of the 1500 MHz generated heat- is shown below:

    The Amlogic S805 SOC as used in the Odroid-C1 and C1+ is made using an ARM Cortex-A5 quad-core CPU and a Mali-450 MP2 GPU.
    Input voltage is 5V, power consumption (idle-max): 0.7-2.3W

    Features : swp, half, thumb, fastmult, VFP, edsp, NEON, VFPv4, tls
    Pipeline : 8 stage, in-order, scalar
    1.57 DMIPS/MHz, giving

    Odroid C1@1500MHz - Android 4.4.4: 623 floating point MIPS (Whetstone) per CPU, 2489 integer MIPS (Dhrystone) per CPU as per BOINC manager.

    Pro's in case of the Odroid-C1/C1+ are the low price (at Raspberry Pi level) coupled with the high MHz, as the ARM Cortex-A5 processor is meant to be the smallest, lowest cost and lowest power ARMv7 application processor. Due to its high speed it blazes past the stock Raspberry Pi2, performance wise. Hardwarekernel also has a number of add-on boards, such as touch screen and hifi.

    Con's are the somewhat limited instruction set (as compared to the earlier Cortex-A8 and -A9 and the later Cortex-A7 cores) and the fact that its dual core Mali-450 MP2 GPU hasn't been tamed yet too, OpenCL-BOINC-wise. It is quite powerful -compared to some other SBC GPUs- at 14.6 GFLOP per core.
    Last edited by Dirk Broer; 11-19-2015 at 01:42 PM.


  8. #8
    Join Date
    Nov 2005
    Location
    Central Pennsylvania
    Posts
    4,333
    Such Detail you are amazing Dirk





    Challenge me, or correct me, but don't ask me to die quietly.

    …Pursuit is always hard, capturing is really not the focus, it’s the hunt ...

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •